2010 圖論與組合學研討會

國立高雄師範大學數學系

日期：2010年5月7日

Organized by

Hsin-Hao Lai (賴欣豪)
Schedule of Programs

Place: 高雄師範大學燕巢校區致理大樓 MA803

<table>
<thead>
<tr>
<th>May 7</th>
<th>Speakers / Events</th>
<th>Titles of Talks</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:20 – 10:50</td>
<td>Sen-Peng Eu (游森棚)</td>
<td>Cyclic sieving of graphs</td>
</tr>
<tr>
<td>10:50 – 11:00</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>11:00 – 12:30</td>
<td>Kuo-Ching Huang (黃國卿)</td>
<td>On the S_k-decompositions of $\lambda K_{m,n}$ and λK_n</td>
</tr>
<tr>
<td>12:30 – 13:20</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>13:20 – 14:50</td>
<td>Chin-Hung Yen (嚴志弘)</td>
<td>Equitable coloring of k-regular 3-chromatic graphs</td>
</tr>
<tr>
<td>14:50 – 15:00</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>15:00 – 16:30</td>
<td>Bor-Liang Chen (陳伯亮)</td>
<td>Equitable coloring of Kenser graphs</td>
</tr>
<tr>
<td>16:30 – 16:40</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>16:40 – 18:10</td>
<td>Tung-Shan Fu (傅東山)</td>
<td>A combinatorial proof of the cyclic sieving phenomenon for faces of coxeterhedra</td>
</tr>
</tbody>
</table>
Cyclic Sieving of Graphs

Sen-Peng Eu spen@nuk.edu.tw

Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan

We introduce cyclic sieving on graphs and prove four instances on classical graph classes. Our methods involve representation theory and symmetric functions.
On the S_k-decompositions of $\lambda K_{m,n}$ and λK_n

Kuo-Ching Huang kchuang@pu.edu.tw

Department of Applied Mathematics, Providence University, Shalu 43301, Taiwan

Suppose that G is a graph and H is a subgraph of G. For a positive integer λ, the λ-fold graph of G, denoted by λG, is a multigraph obtained from G by replacing each edge e of G by λ edges with the same ends as e. The graph G is said to be H-decomposable, denoted by $H|G$, if the edge set $E(G)$ of G can be partitioned into subgraphs such that each subgraph is isomorphic to H. Such a decomposition is called an H-decomposition of G.

In this talk, we investigate the S_k-decompositions of $\lambda K_{m,n}$ and λK_n. The sufficient and necessary conditions for $S_k|G$ are given, where $G = \lambda K_{m,n}$ or $G = \lambda K_n$ with $2k \leq n$. Some other results are also obtained.

Theorem 1. Suppose that m, n, k and λ are positive integers with $m \geq n$. Then $S_k|\lambda K_{m,n}$ if and only if one of the followings hold:

(a) $k|\lambda m$ when $n < k \leq m$.

(b) $k|\lambda mn$ when $k \leq n \leq m$.

Theorem 2. Suppose $2k \leq n$. Then $S_k|\lambda K_n$ if and only if $k|\lambda \left(\frac{n}{2}\right)$.

Theorem 3. Suppose $\frac{n}{2} < k \leq n - 1$ and λ is even. Then $S_k|\lambda K_n$ if and only if $k|\lambda \left(\frac{n}{2}\right)$.

Problem. Suppose that n, k and λ are positive integers with $k|\lambda \left(\frac{n}{2}\right)$. Then λK_n is not S_k-decomposable if and only if λ is odd and $\frac{n+1}{2}n - 1 > \frac{\lambda \left(\frac{n}{2}\right)}{k}$.

References

Equitable Coloring of k-regular 3-chromatic Graphs

Bor-Liang Chena
Yi-Ting Chenb
Chih-Hung Yenb chyen@mail.ncyu.edu.tw

aDepartment of Business Administration, National Taichung Institute of Technology, Taichung 40401, Taiwan
bDepartment of Applied Mathematics, National Chiayi University, Chiayi 60004, Taiwan.

Consider a graph G. A proper k-coloring of G is a labeling $f : V(G) \to \{1, 2, \ldots, k\}$ such that adjacent vertices have different labels. The labels are colors; the vertices of one color form a color class. The chromatic number of G, written $\chi(G)$, is the least k such that G has a proper k-coloring. And G is 3-chromatic if $\chi(G) = 3$. Moreover, a 3-chromatic graph is k-regular if every vertex has degree k. Let $\Delta(G)$ denote the maximum degree of G. We say that G is equitably $\Delta(G)$-colorable if there exists a proper $\Delta(G)$-coloring of G such that the sizes of any two color classes differ by at most one. Clearly, G can be equitably $\Delta(G)$-colorable only if $\Delta(G) \geq \chi(G)$. In this paper, we investigate the equitable $\Delta(G)$-coloring for a k-regular 3-chromatic graph G with $k > 3$.

Keywords: Chromatic number; Regular; Equitable coloring; Maximum degree
Equitable Colorings of Kneser Graphs

Bor-Liang Chen blchen@ntit.edu.tw

Department of Business Administration, National Taichung Institute of Technology, Taichung 40401 Taiwan

An m-coloring of a graph G is a mapping $f : V(G) \to \{1, 2, \ldots, m\}$ such that $f(x) \neq f(y)$ for any two adjacent vertices x and y in G. The chromatic number $\chi(G)$ of G is the minimum number m such that G is m-colorable. An equitable m-coloring of a graph G is an m-coloring f such that any two color classes differ in size by at most one. The equitable chromatic number $\chi_e(G)$ of G is the minimum number m such that G is equitably m-colorable. The equitable chromatic threshold $\chi^*_e(G)$ of G is the minimum number m such that G is equitably r-colorable for all $r \geq m$. It is clear that $\chi(G) \leq \chi_e(G) \leq \chi^*_e(G)$.

For $n \geq 2k + 1$, the Kneser graph $KG(n, k)$ has the vertex set consisting of all k-subsets of an n-set. Two distinct vertices are adjacent in $KG(n, k)$ if they have empty intersection as subsets. The Kneser graph $KG(2k+1, k)$ is called the Odd graph, denoted by O_k. In [1], the authors proved that $\chi_e(KG(n,k)) \leq \chi^*_e(KG(n,k)) \leq n - k + 1$ and $\chi_e(O_k) = \chi^*_e(O_k) = 3$. In this talk, we obtain new upper bounds for $\chi_e(KG(n,k))$. Some other results are also obtained.

Theorem 1[1]. Suppose that $m \geq n - k + 1$. Then $KG(n,k)$ is equitably m-colorable, that is, $\chi_e(KG(n,k)) \leq \chi^*_e(KG(n,k)) \leq n - k + 1$.

Theorem 2. Suppose $2a > n - m + 1$. If $\sum_{i=0}^{k-a} \binom{m-1}{i} \binom{n-m+1}{k-i} > \left\lceil \frac{n}{k} \right\rceil$, then $KG(n,k)$ is equitably m-colorable.

Theorem 3. Suppose $2a = n - m + 1$. If

$$\frac{1}{2} \frac{(m-1)(n-m+1)}{k-a} + \sum_{i=0}^{k-a-1} \binom{m-1}{i} \binom{n-m+1}{k-i} > \left\lceil \frac{n}{k} \right\rceil,$$

then $KG(n,k)$ is equitably m-colorable.

Theorem 4[1]. For $n \geq 5$,

$$\chi_e(KG(n,2)) = \chi^*_e(KG(n,2)) = \begin{cases} n-1 & \text{if } n \geq 7, \\ n-2 & \text{if } n = 5 \text{ or } 6. \end{cases}$$
Theorem 5[1]. For $n \geq 7$,

$$\chi_\pi(KG(n,3)) = \chi_\pi^*(KG(n,3)) = \begin{cases}
 n - 2 & \text{if } n \geq 16, \\
 n - 3 & \text{if } 14 \leq n \leq 15, \\
 n - 4 & \text{if } 7 \leq n \leq 13.
\end{cases}$$

Theorem 6[1]. $\chi(O_k) = \chi_\pi(O_k) = \chi_\pi^*(O_k) = 3$ for $k \geq 1$.

Conjecture[1]. $\chi_\pi(KG(n,k)) = \chi_\pi^*(KG(n,k))$ for $k \geq 2$.

References

A Combinatorial Proof of the Cyclic Sieving Phenomenon for Faces of Coxeterhedra

Tung-Shan Fu tsfu@npic.edu.tw

Mathematics Faculty, National Pingtang Institute of Commerce, Pingtang 900, Taiwan

For a Coxeter system \((W, S)\), the subgroups \(W_J\) generated by subsets \(J \subseteq S\) are called \textit{parabolic subgroups} of \(W\). The \textit{Coxeterhedron} \(PW\) associated to \((W, S)\) is the finite poset of all cosets \(\{wW_J\}_{w \in W, J \subseteq S}\) of all parabolic subgroups of \(W\), ordered by inclusion. This poset can be realized by the face lattice of a simple polytope, constructed as the convex hull of the orbit of a generic point in \(\mathbb{R}^n\) under an action of the reflection group \(W\). For the groups \(W = A_{n-1}, B_n,\) and \(D_n\) in a case-by-case manner, we present an elementary proof of the cyclic sieving phenomenon (CSP) for faces of various dimensions of \(PW\) under the action of a cyclic group generated by a Coxeter element. This result provides a geometric, enumerative and combinatorial approach to the classical type of a theorem in [Reiner-Stanton-White, The cyclic sieving phenomenon, J. Combinatorial Theory Ser. A 108 (2004) 17–50], which is proved by an algebraic method that involves representation theory and Springer’s theorem on regular elements. In this talk, we shall give a brief introduction on the notion CSP and present the combinatorial and algebraic aspects of the CSP for faces of Coxeterhedra. This talk is based on joint work with S.-P. Eu and Y.-J. Pan.